The Best Econometrics Model for Forecasting Equity Market Returns in Developing Countries

Main Article Content

David Umoru
Beauty Igbinovia
Lawrence Egbaju

Abstract

The emerging market economies are fast improving in terms of the real sector and financial sector growth. This is due to the role played by equity market that facilitates re-allocation of funds. This paper aims to find the best GARCH model for forecasting stock returns of emerging markets, and besides to use maximum likelihood estimation method based on the Marquardt algorithm to estimate how returns respond to market news. It was observed the best model for predicting return in equity markets of Tunisia, Kenya, and Sudan is exponential GARCH with general error distribution (GED). For Egypt, Mauritius, South Africa, Namibia, and Nigeria, the gjrGARCH (1,1) with Student’s-t distributions performs best. These market returns react differently to market news relating to them. Whereas, sGARCH with Gaussian normal distribution is mostly suitable for analysing symmetric responses of return to market news, implying returns in these markets does not react differently to market news. These findings have policy implications for investors in these respective economies. Amongst others, the study advises investors, particularly those in the equity market where volatility decays slowly and the market where volatility responds asymmetrically to be watchful as these could pose significant threat to their market portfolios. Investors in these markets, particularly those in the equity market where volatility decays slowly and the market where volatility responds asymmetrically, be watchful, as these could pose a significant threat to their market portfolio.

Article Details

How to Cite
Umoru, D., Igbinovia, B., & Egbaju, L. (2024). The Best Econometrics Model for Forecasting Equity Market Returns in Developing Countries. Journal of Economics, Innovative Management and Entrepreneurship, 2(4). https://doi.org/10.59652/jeime.v2i4.345
Section
Research Article

References

Abidin, S. H. S. J., Hasnan, S., Marzuki, M. M., & Mohamed Hussain, A. R. (2022). A contemporary review of stock market liquidity studies in emerging countries. Corporate & Business Strategy Review, 3(1), 8–18. https://doi.org/10.22495/cbsrv3i1art1 DOI: https://doi.org/10.22495/cbsrv3i1art1

Abina, A. P., & Lemea, G. M. (2019). Capital market and performance of Nigerian economy. International Journal of Innovative Finance and Economics Research, 7(2), 51-66.

Acha, I. A., & Akpan, S. O. (2019). Capital market performance and economic growth in Nigeria. Noble International Journal of Economics and Financial Research, 4(2),10-18.

Adam, A. M., & Gyamfi, E. N. (2015). Time-varying world integration of the African stock markets: A Kalman filter approach. Investment Management and Financial Innovation 12, 175–181.

Adoms, F. U., Yua, H., Okaro, C. S., & Ogbonna, K. S. (2020). Capital market and economic development: a comparative study of three sub-Saharan African emerging economies. American Journal of Industrial and Business Management, 10, 963-987. https://doi.org/10.4236/ajibm.2020.105065. DOI: https://doi.org/10.4236/ajibm.2020.105065

Agbonrha-Oghoye, I. I., Ohiokha, G., Umoru, D., Akhor, S. O., & Igele G. A. (2022). Target capital structure for managerial decision making: Dynamics and determinants. Investment Management and Financial Innovations, 19(3), 322-334. DOI: https://doi.org/10.21511/imfi.19(3).2022.27

Ajigal, D. I., Adeleye, R. A., & Tubokirifuruar, T. S. (2024). Machine learning for stock market forecasting: a review of models and accuracy. Finance & Accounting Research Journal, 6(2), 10-18. DOI: https://doi.org/10.51594/farj.v6i2.783

Akintola, A. F., & Cole, A. A. (2020). Capital market and economic growth in Nigeria (1984-2015). IOSR Journal of Humanities and Social Science, 25(46), 38-46. https://doi.org/10.9790/0837-2504063846

Alabede, J. O. (2015). An Evaluation of the performances of the Nigerian stock exchange. The Gubi Journal, 1(73), ASUP, Bauchi.

Algaeed, A. H. (2020). Capital market development and economic growth: an ARDL approach for Saudi Arabia, 1985-2018. Journal of Business Economics and Management, 1-22. https://doi.org/10.3846/jbem.2020.13569. DOI: https://doi.org/10.3846/jbem.2020.13569

Ali, F., Suri, P., Kaur, T., & Bisht, D. (2022). Modelling time-varying volatility using GARCH models: evidence from the Indian stock market. F1000Research, 11, 1098. https://doi.org/10.12688/f1000research.124998.2 DOI: https://doi.org/10.12688/f1000research.124998.1

Aliyev, F., Ajayi, R., & Gasim, N. (2020). Modeling asymmetric market volatility with univariate GARCH models: Evidence from Nasdaq-100. The Journal of Economic Asymmetries, 22, e00167. https://doi.org/10.1016/j.jeca.2020.e00167 DOI: https://doi.org/10.1016/j.jeca.2020.e00167

Al-Rimawi, M. A., & Kaddumi, T. A. (2021). Factors affecting stock market index volatility: Empirical study. Journal of Governance & Regulation, 10(3), 169–176. https://doi.org/10.22495/jgrv10i3art15 DOI: https://doi.org/10.22495/jgrv10i3art15

Andersen, T. G. & Bollerslev, T. (1998a). Answering the skeptics: Yes, standard volatility models do provide accurate Forecasts. International Economic Review, 39(4), 885-905. DOI: https://doi.org/10.2307/2527343

Anderu, K. S. (2020). Capital market and economic growth in Nigeria. Jurnal Perspektif Pembiayaan dan Pembangunan Daerah, 8(3), 295-310. https://doi.org/10.22437/ppd.v8i3.9652 DOI: https://doi.org/10.22437/ppd.v8i3.9652

Angaye, P. E., & Frank, B. P. (2020). Capital market development and economic growth in Nigeria. American Journal of Business Management, 3(7), 58-63. DOI: https://doi.org/10.33545/26179210.2020.v3.i1.43

Anwar, A., Mohd-Rashid, R., & Che-Yahya, N. (2022). A review of the flipping activity of IPO: Evidence from developed and emerging markets. Corporate Governance and Organizational Behavior Review, 6(1),56–63. https://doi.org/10.22495/cgobrv6i1p4 DOI: https://doi.org/10.22495/cgobrv6i1p4

Anwar, T., & Raza, Y. M. (2016). Economic Integration of Stock Markets: An Evidence from Pakistan, China, and Malaysia stock exchanges. Management and Organizational Studies, 3(3), 52-59. http://dx.doi.org/10.5430/mos.v3n3p52 DOI: https://doi.org/10.5430/mos.v3n3p52

Asteriou, D. & Spanos, K. (2019). The relationship between financial development and economic growth during the recent crisis: Evidence from the EU. Finance Research Letters, 28, 238-245. DOI: https://doi.org/10.1016/j.frl.2018.05.011

Attah-Botchwey, E., Awadzie, D.M., & Agbenyezi, W., (2022). Financial deepening and stock market performance in selected Sub-Sahara African countries. Journal of Economics, Finance, and Accounting, 9(1), 30-38. http://doi.org/10.17261/Pressacademia.2022.1543 DOI: https://doi.org/10.17261/Pressacademia.2022.1543

Awajan, A. M., Ismail, M. T., & Wadi, S. A. (2018). Improving forecasting accuracy for stock market data using EMD-HW bagging. PLoS One, 13(7), 1–20. DOI: https://doi.org/10.1371/journal.pone.0199582

Bello, A. H., Folorunsho, A. I., & Alabi, O. O. (2019). A study on Johansen co-integration approach in analyzing the relationship between the capital market on the economic growth in Nigeria. FUW Trends in Science & Technology Journal, 4(2), 560–568.

Chen, X. L. (2017). Stock price prediction based on the ARIMA model and neural network model. Economic Mathematics, 34(4), 30-34.

Devpura, N., Narayan, P. K., & Sharma, S. S. (2018). Is stock return predictability time-varying? Journal International Financial Market, Institution & Money, 52, 152–172. DOI: https://doi.org/10.1016/j.intfin.2017.06.001

Donwa, P. & Odia, J. (2010). An empirical analysis of the impact of the Nigerian capital market on her socio-economic development. Journal of Social Science, 24(2), 135-142. https://doi.org/10.1080/09718923.2010.11892845 DOI: https://doi.org/10.1080/09718923.2010.11892845

Dritsaki, C. (2017). An empirical evaluation in GARCH volatility modeling: evidence from the Stockholm Stock Exchange. Journal of Mathematical Finance, 7, 366-390. https://doi.org/10.4236/jmf.2017.72020. DOI: https://doi.org/10.4236/jmf.2017.72020

Dutta, A. (2014). Modeling Volatility: Symmetric or asymmetric GARCH models? Journal of Statistics: Advances in Theory and Applications, 12, 99-108.

Emmanuel, A. O., & Elizabeth, O. E. (2020). Capital market performance as a panacea for economic growth in Nigeria. International Business Research, 13(2), 1-1. https://doi.org/10.5539/ibr.v13n2p1 DOI: https://doi.org/10.5539/ibr.v13n2p1

Gao, Y., Zhang, C., & Zhang, L. (2012). Comparison of GARCH models based on different distributions. Journal of Computers, 7. https://doi.org/10.4304/jcp.7.8.1967-1973. DOI: https://doi.org/10.4304/jcp.7.8.1967-1973

Glosten, L. R., Jagannathan, R., & Runkle, D. E. (1993). On the relation between the expected value and the volatility of the nominal excess return on stocks. Journal of Finance, 48(5), 1779–1801. DOI: https://doi.org/10.1111/j.1540-6261.1993.tb05128.x

Goldsmith, R. W. (1969). Financial structure and development. New Haven, Coon: Yale University Press.

Grbić, M. (2020). Stock market development and economic growth: The case of the Republic of Serbia. Post-Communist Economies, 1-16. https://doi.org/10.1080/14631377.2020.1745566 DOI: https://doi.org/10.1080/14631377.2020.1745566

Gulzar, S., Mujtaba Kayani, G. M., Xiaofeng, H., Ayub, U., & Rafique, A. (2019). Financial co-integration and spillover effect of the global financial crisis: A study of emerging Asian financial markets. Economic Research-Ekonomska Istraživanja, 32(1), 187–218. https://doi.org/10.1080/1331677X.2018.1550001. DOI: https://doi.org/10.1080/1331677X.2018.1550001

He, B. L. (2008). The optimal selection model for stock price prediction. Statistics and Decision, 6, 135-137.

Hongwiengjan, W., & Thongtha, D. (2021). An analytical approximation of option prices via TGARCH model. Economic Research-Ekonomska Istraživanja, 34(1), 948–969. https://doi. org/10.1080/1331677X.2020.1805636 DOI: https://doi.org/10.1080/1331677X.2020.1805636

Ibrahim, U. A., & Mohammed, Z. (2020). Assessing the impact of capital market development on economic growth: Evidence from Nigeria. IOSR Journal of Economics and Finance, 11(2), 01-15. https://doi.org/10.9790/5933-1102070115

Jiang, W., Ruan, Q., Li, J., & Li, Y. (2018). Modeling returns volatility: Realized GARCH incorporating realized risk measure. Physica A: Statistical Mechanics and Its Applications, 500, 249–258. https://doi.org/10.1016/j.physa.2018.02.018. DOI: https://doi.org/10.1016/j.physa.2018.02.018

Kim, J.-M., Kim, D. H., & Jung, H. (2021). Estimating yield spreads volatility using GARCH-type models. The North American Journal of Economics and Finance, 57, 101396. https://doi.org/10.1016/j.najef.2021.101396. DOI: https://doi.org/10.1016/j.najef.2021.101396

Lakshmanasamy, T. (2021). The causal relationship between capital market performance and economic growth: A vector error correction model estimation. Indian Journal of Applied Business and Economics Research, 2(1), 99-119.

Levenberg, K. (1944). A method for the solution of certain non-linear problems in least squares. Quarterly of Applied Mathematics, 2(2), 164–168. https://doi.org/10.1090/qam/10666 DOI: https://doi.org/10.1090/qam/10666

López-Cabarcos, M. Á., Ribeiro-Soriano, D., & Piñeiro-Chousa, J. (2020). All that glitters is not gold. The rise of gaming in the COVID-19 pandemic. Journal of Innovation & Knowledge, 5(4), 289-296. https://doi.org/10.1016/j.jik.2020.10.004 DOI: https://doi.org/10.1016/j.jik.2020.10.004

Lu, W.B. (2006). Chinese stock market volatility prediction based on a non-parametric GARCH model. Mathematical Statistics and Management, 25(4), 455-461.

Luo, Q., Bu, J., Xu W., & Huang, D. (2023). Stock market volatility prediction: Evidence from a new bagging model. International Review of Economics & Finance, 87(C), 445-456. https://doi.org/10.1016/j.iref.2023.05.008 DOI: https://doi.org/10.1016/j.iref.2023.05.008

Mallikarjuna M., Arti G., & Rao R. P. (2018). Forecasting stock returns of selected sectors of Indian capital market. SS International Journal of Economics and Management, 8(6), 111–126.

Mallikarjuna, M., & Rao, R. P. (2019). Evaluation of forecasting methods from selected stock market returns. Finance Innovation, 5, 40. https://doi.org/10.1186/s40854-019-0157-x DOI: https://doi.org/10.1186/s40854-019-0157-x

Manuel, E. F., João, D., & Jelson, S. (2022). Stock market and economic growth: Evidence from Africa. Working Papers REM 2022/0228, ISEG - Lisbon School of Economics and Management, REM, Universidade de Lisboa.

Marquardt, D. (1963). an algorithm for least-squares estimation of nonlinear parameters. SIAM Journal on Applied Mathematics, 11(2), 431–441. https://doi.org/10.1137/0111030 DOI: https://doi.org/10.1137/0111030

McKinnon, R. I. (1973). Money and Capital in Economic Development. Washington DC: Brookings Institutions Press.

Milošević, M., Anđelić, G., Vidaković, S., & Đaković, V. (2019). The influence of holiday effect on the rate of return of emerging markets: A case study of Slovenia, Croatia, and Hungary. Economic Research-Ekonomska Istraživanja, 32(1), 2354-2376. https://doi.org/10.1080/1331677X.2019.1638281. DOI: https://doi.org/10.1080/1331677X.2019.1638281

Nayak, S. C., & Misra, B. B. (2018). Estimating stock closing indices using a GA-weighted condensed polynomial neural network. Financial Innovation, 4(21), 1–22. DOI: https://doi.org/10.1186/s40854-018-0104-2

Nelson, D. B. (1991). Conditional heteroskedasticity in asset returns: A new approach. Econometrica, 59(2), 347–370. DOI: https://doi.org/10.2307/2938260

Salisu, A. A. & Vob, X. V. (2020). Predicting stock returns in the presence of covid-19 pandemic: The role of health news. International Review of Financial Analysis, 71, 101546. https://doi.org/10.1016/j.irfa.2020.101546 DOI: https://doi.org/10.1016/j.irfa.2020.101546

Salisu, A. A., Isah, K. O., & Akanni L. O. (2019). Improving the predictability of stock returns with Bitcoin prices. North American Journal of Economics and Finance, 48, 857–867. https://doi.org/10.1016/j.najef.2018.08.010 DOI: https://doi.org/10.1016/j.najef.2018.08.010

Salisu, A. A., Raheem, I. D., & Ndako U. D. (2019). A sectoral analysis of asymmetric nexus between oil price and stock returns. International Review of Economics and Finance, 61, 241-259. https://doi.org/10.1016/j.iref.2019.02.005 DOI: https://doi.org/10.1016/j.iref.2019.02.005

Salisu, A. A., Swaray, R., & Oloko, T. F. (2019). Improving the predictability of the oil-US stock nexus: The role of macroeconomic variables. Economic Modelling, 76, 153–171. https://doi.org/10.1016/j.econmod.2018.07.029 DOI: https://doi.org/10.1016/j.econmod.2018.07.029

Salisu, A.A., Isah, K. O., & Raheem I. D. (2019). Testing the predictability of commodity prices in stock returns of G7 countries: Evidence from a new approach. Resources Policy, 64. https://doi.org/10.1016/j.resourpol.2019.101520 DOI: https://doi.org/10.1016/j.resourpol.2019.101520

Shaw, E. S. (1973). Financial Deepening in Economic Development. Oxford University Press, New York.

Stiglingh, Z. & Seitshiro, M. (2022). Quantification of GARCH (1, 1) model misspecification with three known assumed error term distributions. Journal of Financial Risk Management, 11, 549-578. https://doi.org/10.4236/jfrm.2022.113026. DOI: https://doi.org/10.4236/jfrm.2022.113026

Sun, W. (2003). Relationship between Trading Volume and Security Price and Return. MIT Laboratory for Information and Decision Systems. http://ssg.mit.edu/group/waltsun/docs/Area.ExamTR2638.pdf.

Tachiwou, A. M. (2010). Stock Market Development and Economic Growth: The case of West African Monetary Union. International Journal of Economics and Finance, 2(3), 97–111. DOI: https://doi.org/10.5539/ijef.v2n3p97

Tudor, C. (2008). Modeling time series volatilities using symmetrical GARCH models. The Romanian Economic Journal, 30, 183-208.

Twerefou, D., Abbey, E., Codjoe, E., & Ngotho, P. (2019). Impact of stock market development on economic growth: evidence from selected sub-Saharan African countries. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 67, 1071-1083. 10.11118/actaun201967041071. DOI: https://doi.org/10.11118/actaun201967041071

Umoru, D. (2022). Devaluation of naira, shocks, and realities: Evidence disciplining strength. 4th Inaugural Lecture Series of Edo State University Uzairue, Nigeria.

Umoru, D., Effiong, S. E., Okpara, E., Iyayi, D., Oyegun, G., Iyaji, D., …Ekeoba, A. A. (2023f). Fiscal effects of exchange rate devaluation and capital flows to emerging countries. Journal of Governance & Regulation, 12(1), 387–400. https://doi.org/10.22495/jgrv12i1siart17. DOI: https://doi.org/10.22495/jgrv12i1siart17

Umoru, D., Effiong, S. E., Ugbaka, M. A., Iyaji, D., Okpara, E., Ihuoma, C. C., …Omomoh, O. H. (2023e). Evaluating structural relations between money demands and its determinants. Corporate Governance and Organizational Behavior Review, 7(2), 71–95. https://doi.org/10.22495/cgobrv7i2p7 DOI: https://doi.org/10.22495/cgobrv7i2p7

Wang, C. (2024). Stock return prediction with multiple measures using neural network models. Finance Innovation, 10(72). https://doi.org/10.1186/s40854-023-00608-w DOI: https://doi.org/10.1186/s40854-023-00608-w

Wei, H. Y., & Meng, C. J. (2014). Short-term exchange rate prediction based on the GARCH model. Economic Mathematics, 31(1), 81-84.

Wu, Y. X., & Wen X. (2016). Short-term stock price prediction based on the ARIMA model. Statistics and Decision, 23, 83-86.

Xu, Y., Wang, X., & Liu, H. (2021). Quantile-based GARCH-MIDAS: Estimating value-at-risk using mixed-frequency information. Finance Research Letters, 101965. https://doi.org/10.1016/j.frl.2021.101965 DOI: https://doi.org/10.1016/j.frl.2021.101965

Yang, Q., & Cao, X. B. (2016). Analysis and prediction of stock price based on the ARMA-GARCH model. Mathematical Practice and Cognition, 46(6), 80-86.

Yuanwei, H., Zheng, T., Dongao, X., Ziyi, P., Junyi, Z., & Xiaoling, C. (2020). Research on stock returns forecast of the four major banks based on ARMA and GARCH Model. Journal of Physics: Conference Series, 1616, 012075. https://doi.org/10.1088/1742-6596/1616/1/01207 DOI: https://doi.org/10.1088/1742-6596/1616/1/012075

Yuling, W., Yunshuang, X., Xinyu, L., & Yucheng, Z. (2022). Volatility analysis based on GARCH-type models: Evidence from the Chinese stock market. Economic Research-Ekonomska Istraživanja, 35(1), 2530-2554. https://doi.org/10.1080/1331677X.2021.1967771 DOI: https://doi.org/10.1080/1331677X.2021.1967771

Zhifeng, D., & Xiaoming, C. (2021). Predicting stock return with an economic constraint: can interquartile range truncate the outliers? Mathematical Problems in Engineering. https://doi.org/10.1155/2021/9911986 DOI: https://doi.org/10.1155/2021/9911986

Zhong, X., & Enke, D. (2019). Predicting the daily return direction of the stock market using hybrid machine learning algorithms. Financial Innovation, 5(4), 1–20. DOI: https://doi.org/10.1186/s40854-019-0138-0

Živkov, D., Kuzman, B., & Andrejević-Panić, A. (2021). Nonlinear bidirectional multiscale volatility transmission effect between stocks and exchange rate markets in the selected African countries. Economic Research-Ekonomska Istraživanja, 34(1), 1623-1650. DOI: https://doi.org/10.1080/1331677X.2020.1844585