Non-Performing Loans in Cambodia’s Microfinance Sector: Challenges and Implication for Sustainable Economic Growth
Main Article Content
Abstract
This study investigates the impact of Non-Performing Loans (NPLs) on Cambodia’s economic growth, utilizing panel data analysis with annual data from 62 microfinance institutions over the period 2017-2023. Data sourced from the National Statistics Institution of Cambodia, National Bank of Cambodia, and World Bank. The results show that NPLs have a significant negative effect on Gross Domestic Product (GDP) growth. In contrast, inflation is found to have a positive relationship with GDP growth, suggesting that moderate inflation may stimulate economic activity. Furthermore, government regulations are shown to have a positive influence on GDP growth, highlighting the importance of a well-structured regulatory environment. These findings emphasize the need to strengthen financial sector stability, carefully manage inflation, enhance regulatory frameworks, and encourage sectoral diversification to ensure sustainable economic growth in Cambodia. The study also underscores the importance of further research to better understand the mechanisms underlying the relationship between these variables and economic performance.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Abaidoo, R., & Agyapong, E. K. (2023). Global food price volatility and inflationary pressures among developing economies. SN Business & Economics, 3, Article 188. https://doi.org/10.1007/s43546-023-00569-3 DOI: https://doi.org/10.1007/s43546-023-00569-3
Akhmaddhian, S., Budiman, H., Bhandari, R., & Najicha, F. U. (2023). The strengthening of government policies on mineral and coal mining to achieve environmental sustainability in Indonesia, Africa, and Germany. Bestuur, 11(1). https://jurnal.uns.ac.id/bestuur/article/view/71279/pdf DOI: https://doi.org/10.20961/bestuur.v11i1.71279
An, X., & Pivo, G. (2020). Green buildings in commercial mortgage‐backed securities: The effects of LEED and Energy Star certification on default risk and loan terms. Real Estate Economics, 48(4), 722–746. DOI: 10.1111/1540-6229.12228 DOI: https://doi.org/10.1111/1540-6229.12228
Baltagi, B. (2021). Econometric analysis of panel data. Springer. DOI: https://doi.org/10.1007/978-3-030-53953-5
Blanchard, O. (2019). Public debt and low interest rates. American Economic Review, 109(4), 1197–1229. DOI: 10.1257/aer.109.4.1197 DOI: https://doi.org/10.1257/aer.109.4.1197
Bocean, C. G., & Vărzaru, A. A. (2023). EU countries’ digital transformation, economic performance, and sustainability analysis. Humanities and Social Sciences Communications, 10, Article 875. https://doi.org/10.1057/s41599-023-02415-1 DOI: https://doi.org/10.1057/s41599-023-02415-1
Bren, D., & Tchetgen, E. J. (2022). Nonparametric statistics for the behavioral sciences. In The SAGE Encyclopedia of Research Design. SAGE Publications.
Cai, Y., & Omay, T. (2022). Using double frequency in Fourier Dickey–Fuller unit root test. Computational Economics, 59, 445–470. https://doi.org/10.1007/s10614-020-10075-5 DOI: https://doi.org/10.1007/s10614-020-10075-5
Christodoulou-Volos, C., & Tserkezos, D. (2023). Sensitivity of the Ramsey’s regression specification error term test on the degree of nonlinearity of the functional form. Journal of Applied Economic Sciences, 18(1), 5–10. https://doi.org/10.57017/jaes.v18.1(79).01 DOI: https://doi.org/10.57017/jaes.v18.1(79).01
Cieslak, A., & Pflueger, C. E. (2022). Inflation and asset returns. Annual Review of Financial Economics, 15, 433-448. https://doi.org/10.1146/annurev-financial-110921-104726 DOI: https://doi.org/10.1146/annurev-financial-110921-104726
Deng, Y., & Yao, H. (2020). Corporate cash holdings and monetary shocks: A test of the credit channel theory. Review of Financial Economics, 39(2), 203–222. https://doi.org/10.1002/rfe.1117 DOI: https://doi.org/10.1002/rfe.1117
Desgagné, A., & Lafaye de Micheaux, P. (2017). A powerful and interpretable alternative to the Jarque–Bera test of normality based on 2nd-power skewness and kurtosis, using the Rao’s score test on the APD family. Journal of Applied Statistics, 45(13), 2307–2327. https://doi.org/10.1080/02664763.2017.1415311 DOI: https://doi.org/10.1080/02664763.2017.1415311
Evans, O., & Ntim Adjei, L. (2014). The impact of high lending rates on borrowers’ ability to pay back loans in the Tamale Metropolis. Research Journal of Finance and Accounting, 5(2), 69-76. https://www.iiste.org/Journals/index.php/RJFA/article/view/16923/17252
Frey, C. B., & Osborne, M. A. (2017). The future of employment: How susceptible are jobs to computerization? Technological Forecasting and Social Change, 114, 254–280. https://doi.org/10.1016/j.techfore.2016.08.019 DOI: https://doi.org/10.1016/j.techfore.2016.08.019
Goyal, S., Singhal, N., Mishra, N., & Verma, S. K. (2023). The impact of macroeconomic and institutional environment on NPL of developing and developed countries. Future Business Journal, 9, Article 45. https://doi.org/10.1186/s43093-023-00216-1 DOI: https://doi.org/10.1186/s43093-023-00216-1
Hassan, K. H. U., Sheikh, S., & Rahman, S. U. (2022). Determinants of non-performing loans (NPLs): Evidence from the banking sector of Pakistan. Annals of Social Sciences and Perspective, 3(1), 431–452. https://assap.wum.edu.pk/index.php/ojs/article/view/144 DOI: https://doi.org/10.52700/assap.v3i1.144
Jiang, B., & Ye, T. (2022). Uncertain panel regression analysis with application to the impact of urbanization on electricity intensity. Journal of Ambient Intelligence and Humanized Computing, 14(1), 13017–13029. https://doi.org/10.1007/s12652-022-04170-8 DOI: https://doi.org/10.1007/s12652-022-04170-8
Juarto, B. (2023). Breast cancer classification using outlier detection and variance inflation factor. Journal Engineering, Mathematics and Computer Science (EMACS) Journal, 5(1), 17–23. https://doi.org/10.21512/emacsjournal.v5i1.9223 DOI: https://doi.org/10.21512/emacsjournal.v5i1.9223
Khan, M. F., Ali, M. S., Hossain, M. N., & Bairagi, M. (2023). Determinants of non-performing loans in conventional and Islamic banks: Emerging market evidence. Modern Finance, 1(1), 56–69. https://doi.org/10.61351/mf.v1i1.27 DOI: https://doi.org/10.61351/mf.v1i1.27
Kyriazopoulos, G. (2023). Mergers and acquisitions in the Greek banking system: A profitability evaluation analysis with the DuPont model. International Journal of Applied Research in Social Sciences, 5(9). https://doi.org/10.51594/ijarss.v5i9.602 DOI: https://doi.org/10.51594/ijarss.v5i9.602
Kyriazos, T., & Poga, M. (2023). Dealing with multicollinearity in factor analysis: The problem, detections, and solutions. Open Journal of Statistics, 13, 404–424. DOI: 10.4236/ojs.2023.133020 DOI: https://doi.org/10.4236/ojs.2023.133020
Lianos, T. P., Pseiridis, A., & Tsounis, N. (2023). Declining population and GDP growth. Humanities and Social Sciences Communications, 10, 725. https://doi.org/10.1057/s41599-023-02223-7 DOI: https://doi.org/10.1057/s41599-023-02223-7
Liu, X., Wojewodzki, M., Cai, Y., & Sharma, S. (2023). The dynamic relationships between carbon prices and policy uncertainties. Technological Forecasting and Social Change, 188, 122325. DOI: https://doi.org/10.1016/j.techfore.2023.122325
Loomans, D., & Kaika, M. (2021). Mortgage regulation as a quick fix for the financial crisis: Standardised lending and risky borrowing in Canada and the Netherlands. International Journal of Housing Policy, 23(1), 24–46. https://doi.org/10.1080/19491247.2021.1946639 DOI: https://doi.org/10.1080/19491247.2021.1946639
Malovaná, S., & Ehrenbergerová, D. (2022). The effect of higher capital requirements on bank lending: The capital surplus matters. Empirica, 49(3), 793–832. https://doi.org/10.1007/s10663-022-09536-x DOI: https://doi.org/10.1007/s10663-022-09536-x
Masengi, E. E., Lumingkewas, E. M. C., & Supit, B. F. (2023). Implementation of Government Regulation No. 53 of 2010 concerning Civil Servant Discipline in the Finance, Asset, and Revenue Management Office of Minahasa Regency. Technium Social Sciences Journal, 40(1), 11–22. https://doi.org/10.47577/tssj.v40i1.8404 DOI: https://doi.org/10.47577/tssj.v40i1.8404
Naoaj, M. S. (2023). Exploring the determinants of capital adequacy in commercial banks: A study of Bangladesh’s banking sector. European Journal of Business and Management Research, 8(2), 108–112. DOI: 10.24018/ejbmr.2023.8.2.1887 DOI: https://doi.org/10.24018/ejbmr.2023.8.2.1887
National Bank of Cambodia. (2023). Annual report 2023. National Bank of Cambodia. https://www.nbc.org.kh/
Nguyen, T. C., Castro, V., & Wood, J. (2022). A new comprehensive database of financial crises: Identification, frequency, and duration. Economic Modelling, 108, Article 105770. https://doi.org/10.1016/j.econmod.2022.105770 DOI: https://doi.org/10.1016/j.econmod.2022.105770
Özsoy, O., & Tasinato, G. (2023). Inflation and primordial black holes. Universe, 9(5), 203. https://doi.org/10.3390/universe9050203 DOI: https://doi.org/10.3390/universe9050203
Pavković, A., Hrgović, R., & Cesarec, A. (2018). Impact of non-performing loans on banks’ loan portfolio and economic growth in the Republic of Croatia and Bosnia and Herzegovina. Zbornik radova Ekonomskog fakulteta Sveučilišta u Mostaru, Special Issue 2018, 7–20. https://doi.org/10.46458/27121097.2018.SI.7 DOI: https://doi.org/10.46458/27121097.2018.SI.7
Raza, M., Ahmed, M., Razzaque, S., & Hina, H. (2023). Testing for Heteroskedasticity in The Presence of Outliers. Journal of Education and Social Studies, 4(2), 313–329. https://doi.org/10.52223/jess.2023.4209 DOI: https://doi.org/10.52223/jess.2023.4209
Reinhart, C. M., & Rogoff, K. S. (2010). Growth in a time of debt. American Economic Review, 100(2), 573–578. DOI: 10.1257/aer.100.2.573 DOI: https://doi.org/10.1257/aer.100.2.573
Saliba, C., Farmanesh, P., & Athari, S. A. (2023). Does country risk impact the banking sectors’ non-performing loans? Evidence from BRICS emerging economies. Financial Innovation, 9, Article 86. https://doi.org/10.1186/s40854-023-00494-2 DOI: https://doi.org/10.1186/s40854-023-00494-2
Sapra, S. (2018). A regression error specification test (RESET) for the truncated regression model. International Journal of Accounting and Economics Studies, 6(2), 53. https://doi.org/10.14419/ijaes.v6i2.13478 DOI: https://doi.org/10.14419/ijaes.v6i2.13478
Stater, M., & Hoag, C. (2023). Including the instruments in the regression is the Hausman test. Annals of Economics and Statistics, 152, 43–64. DOI: 10.2307/48754784 DOI: https://doi.org/10.2307/48754784
Thompson, C. G., Kim, R. S., Aloe, A. M., & Becker, B. J. (2017). Extracting the Variance Inflation Factor and Other Multicollinearity Diagnostics from Typical Regression Results. Basic and Applied Social Psychology, 39(2), 81–90. https://doi.org/10.1080/01973533.2016.1277529 DOI: https://doi.org/10.1080/01973533.2016.1277529
Upendra, S., Abbaiah, R., Balasiddamuni, P., & Murali, K. (2023). Residual analysis in simple linear regression: A practical application with the Jarque-Bera test. International Scientific Journal of Engineering and Management., 7(11). DOI: 10.55041/IJSREM26596 DOI: https://doi.org/10.55041/IJSREM26596
Verho, J. (2020). Economic crises and unemployment persistence: Analysis of job losses during the Finnish recession of the 1990s. Economica, 87(345), 190–216. https://doi.org/10.1111/ecca.12300 DOI: https://doi.org/10.1111/ecca.12300
Wang, H., Mao, K., Wu, W., & Luo, H. (2023). Fintech investment, non-performing loans risk reduction, and bank performance improvement. International Review of Financial Analysis, 90(5), 102849. DOI:10.1016/j.irfa.2023.102849 DOI: https://doi.org/10.1016/j.irfa.2023.102849
Wooldridge, J. M. (2022). Simple approaches to nonlinear difference-in-differences with panel data. The Econometrics Journal, 26(3), C31–C66. https://doi.org/10.1093/ectj/utad016 DOI: https://doi.org/10.1093/ectj/utad016