Scientific habilty by using DNA and robotic activities in the science class

Main Article Content

gina suescun

Abstract

Educational robotics as an area of pedagogy is a discipline whose objective is the development of robotic prototypes that support the learning of natural sciences, demonstrating its potential as a didactic proposal that integrates technology into transdisciplinary thinking favoring digital thinking in the 21st century, in which we can mention scientific ability and the development of solutions to problems that favor scientific thinking. This educational research aims to connect the fields of chemistry and biology with the growing technology of educational robotics. A descriptive interpretive methodology was applied to a group of 80 high school students; They conducted experimental activities such as extracting DNA from tomatoes and observing the stages of mitosis in onion apical meristems. After observing the chromosomes in a microscope, the students use an augmented reality application, contrasting the information and creating a robotic model with recyclable material, programmed using the open-source ap-plication Arduino. No significant differences were found during the development of the activities between public and private schools, showing that 90% of the students obtained the DNA and 67% managed to develop robotic programming activities.

Metrics

Metrics Loading ...

Article Details

How to Cite
suescun, gina. (2024). Scientific habilty by using DNA and robotic activities in the science class. EIKI Journal of Effective Teaching Methods, 2(3). https://doi.org/10.59652/jetm.v2i3.271
Section
Articles

References

Anderson, E., Buchko, A., & Buchko, K. (2016). Giving negative feedback to Millennials: How can managers criticize the “most praised” generation. Management Research Review, 39(6), 692-705. https://doi.org/10.1108/MRR-05- 2015-0118.

Cáceres Zapatero, M. D., Brändle Señán, G., & Ruiz San Román, J. A. (2017). Sociabilidad virtual: la interacción social en el ecosistema digital. Historia y Comunicación Social, 22(1), 233-247. https://doi.org/10.5209/HICS.55910

Castro Rojas, M. D., & Acuña Zuñiga, A. L. (2012). Propuesta comnitaria con robótica educativa: valoración y resultados de aprendizaje. Revista Teoría de la educación: Educación y cultura de la sociedad de la iformación, 13(2), 91-118.

Correa Ortiz, L. C., Vallejo Jiménez, M. M., Martínez Puerta, J. J., &Trujillo Posada, J. A. (2019). Herramienta de ro- bótica educativa basada en Lego Mindstorms y VEX Robotics mediante software 3D y diseño mecatrónico. Risti. Revista Ibérica de Sistemas y Tecnologías de Información, 34(1), 1-19. https://doi.org/10.17013/risti.34.1-19

Fanchamps, N., Slangen, L., Specht, M., & Hennissen, P. (2022). Effect of SRA-programming on computa-tional thinking through dif-ferent output modalities. Journal of Computers in Education, 1–30. https://doi.org/10.1007/s40692-022-00236-w

Gamboa-Cordero, Y., & Bosco, A., (2022). La robótica y el movimiento maker en primaria: un desafío pedagógico. UTE Teaching & Technology Núm, 2. https://doi.org/10.17345/ute.2022.2.3381

Lepuschitz, W., Merdan, M., Koppensteiner, G., Balogh, R., & Obdržálek, D. (eds.) (2018). Robotics in education. Latest results and developments. Springer. https://doi.org/10.1007/978-3-319-62875-2

Matthew, N., Bismark, N., & Salamatu M. (2024). Prioritizing STEAM Education from the Start: The Path to Inclusive and Sustainable STEAM Education. International Journal of STEM Education for Sustainability, 4(1), 54-69. https://doi.org/10.53889/ijses.v4i1.322

Merdan, M., Lepuschitz, W., Koppensteiner, G., Balogh, R., & Obdržálek, D. (eds.). (2020). Robotics in Education. Current Research and Innovations. Advances in Intelligent Systems and Computing. Springer. https://doi.org/10.1007/978-3-030-26945-6

Nuangchalerm, P., Islami, Z., & Prasertsang, P. (2022). Science attitude on environmental conservation of Thai and Indonesian novice science teacher students. International Journal of STEM Education for Sustainability, 2(2), 148-155. https://doi.org/10.53889/ijses.v2i2.62.

Ortega, B., & Asensio, M. (2018). Robótica DIY: pensamiento computacional para mejorar la resolución de problemas. Revista Latino-americana de Tecnología Educativa, 17(2), 129-143.

Papert, S. (1998). Child power: Keys to the new learning of the digital century: Presentation and videotape.Colin Cherry Memorial lecture on communication, Imperial College of London. http://papert.org/works.html

Phetsrikran, T., Massagram, W., Phoka, T., & Harfield, A. (2018). A Feasibility Study of Arducation Bot: An Educational Robotics and Mobile Application Kit for Computational Thinking Skills. 22nd International Computer Science and Engineering Conference (ICSEC) (pp. 1-6). https://doi.org/10.1109/ICSEC.2018.8712671

Pérez Acosta, G., & Mendoza-Moreno, M. (2020). Robótica educativa: propuesta curricular para Colombia. Educación y Educadores, 23(4), 577-595. https://doi.org/10.5294/edu.2020.23.4.2

Pina-Calafi, A. (2017). Robótica educativa en educación primaria: ¿por qué y cómo? In G. Perez Acosta, P. Castellano, and C. Pina (eds.), Propuestas de innovación educativa en la sociedad de la información (pp. 15-27). Adaya.

Sáez-López, J.-M., Sevillano-García, M.-L., &Vazquez-Cano, E. (2019). The effect of programming on primary school students’ mathe-matical and scientific understanding: Educational use of mBot. Educational Technology Research and Development, 67(6), 1405–1425. https://doi.org/10.1007/s11423-019-09648-5

Samani, M., Sunwinarti, S., Putra, B. A., Rahmadian, R., & Rohman, J. N. (2019). Learning strategy to develop critical thinking, creativity, and problem-solving skills for vocational school students. Jurnal Pendidikan Teknologi dan Kejuruan, 25(1), 36-42. https://doi.org/10.21831/jptk.v25i1.22574

Scaradozzi, D., Sorbi, L., Pedale, A., Valzano, M., & Vergine, C. (2015). Teaching robotics at the primary school: An innovative approach. Procedia. Social and Behavioral Sciences, 174, 3838-3846. https://doi.org/10.1016/j.sbspro.2015.01.1122

Sendag, S., & Odabashi, H. (2009). Effects of an online problem-based learning course on content knowledge acquisition and critical thinking skills. Computers &Education, 53(1), 132-141.

Stylos, G., Siarka, O., & Kotsis, K. T. (2023). Assessing Greek pre-service primary teachers’ scientific literacy. European Journal of Science and Mathematics Education, 11(2), 271-282. https://doi.org/10.30935/scimath/12637

Sullivan, A., & Bers, M. (2016). Robotics in the early childhood classroom: learning outcomes from an 8-week robotics curriculum in pre-kindergarten through second grade. International Journal of Technology and Design Education, 26(1), 3-20. https://doi.org/10.1007/s10798-015-9304-5

Sullivan, F. R. (2009). Risk and responsibility: A self-study of teaching in second life. Journal of Interactive Learning Research, 20(3), 337-357.

Sultan, A., Henson Jr., H., & Lickteig, D. (2021). Assessing preservice elementary teachers’ conceptual understanding of scientific literacy. Teaching and Teacher Education, 102, 1-10. https://doi.org/10.1016/j.tate.2021.103327

Tesconi, S. (2018). El docente como maker. La formación del profesorado en making educativo. Universitat Autònoma de Barcelona.

Ucgul, M., & Cagiltay, K. (2014). Design and development issues for educational robotics training camps. International Journal of Technology and Design Education, 24(2), 203-222. https://doi.org/10.1007/s10798-013-9253-9

Viegas, J. V. D., & Villalba, K. O. C. (2017). Educación y Robótica Educativa. RED, 54, 1-13. http://dx.doi.org/10.6018/red/54/11.

Viscaino Zúñiga, P. I., Cedeño Cedeño, R. J., & Maldonado Palacios, I. A. (2023). Metodología de la investigación científica: guía práctica. Ciencia Latina Revista Científica Multidisciplinar, 7(4), 9723-9762. https://doi.org/10.37811/cl_rcm.v7i4.7658